検索キーワード「Graph of a function」に一致する投稿を関連性の高い順に表示しています。 日付順 すべての投稿を表示
検索キーワード「Graph of a function」に一致する投稿を関連性の高い順に表示しています。 日付順 すべての投稿を表示

最高のコレクション parabola (y-k)^2=4p(x-h) 805402-If the focus of the parabola (y-k)^2=4(x-h)

500 write the equation for a center of (2,4) what is x^2 4x y^2 8y = 2?When p is positive, the parabola opens upward When p is negative, the parabola opens downward (x h)2 = 4p(y k) The Standard Form of the Equation with Vertex (h, k) For a parabola with an axis of symmetry parallel to the xaxis and a vertex at (h, k), the standard form is The equation of the axis of symmetry is y = k For a horizontal parabola, focus = (hp,k) ∴ (hp,k) = (3,2) ⇒hp = 3 and k= 2 For a horizontal parabola the equation of directrix is x = h−p ∴ h−p =−1 Solving the equations hp =3 and h−p = −1, we get h = 1 and p = 2 ∴ vertex =(1,2) equation of parabola(y−k)2 = 4p(x−h) ⇒(y−2)2 = 8(x−1)2

Pslv Conic Section

Pslv Conic Section

If the focus of the parabola (y-k)^2=4(x-h)

close